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ABSTRACT
In this paper, we propose MuTATE, a Multi-Task Augmented para-
digm to learn Transferrable Embeddings of knowledge graphs. Pre-
vious research efforts can be categorized into two distinct directions.
The first assumes that the knowledge graph is complete and uses it
to augment specific machine learning models in a task-specific pa-
rameterized manner. The second applies geometric, relation-based,
and path-based hypotheses to complete and enrich the knowledge
graph by learning informative node embeddings. Contrary to these
efforts, we propose a novel framework to connect task-specific
inductive models with knowledge graph completion and enrich-
ment processes. Specifically, models that predict links between dis-
tinct, potentially disconnected subsets of nodes in the knowledge
graph are unified vis-a-vis the underlying node embedding space,
permitting multi-directional knowledge transfer (model-to-graph,
graph-to-model, and even model-to-model via graph) through coun-
terfactual reasoning. Experimental results on two public datasets
show that the proposed approach effectively integrates task-models
with knowledge graph embedding and permits for the above types
of knowledge transfer.

KEYWORDS
KnowledgeGraph; KnowledgeGraph Embedding;Multi-Task Learn-
ing; Counterfactual Reasoning

1 INTRODUCTION
The modern-day rise of artificial intelligence in academic research
and industrial applications has sparked renewed interest in knowl-
edge graphs (KGs). Knowledge graphs are graph-structured knowl-
edge baseswhere vast amounts of information available in theworld
are succinctly represented as entities (nodes) and relationships
(edges)—see Figure 1. Knowledge graphs are semantically enriched
(i.e., entities and relationships have associated meanings) and thus
unites machine learning and graph technologies to give artificial
intelligence the context it needs. Knowledge graphs are essential
resources in many vital applications today. For example, intelligent
assistants Apple’s Siri and Amazon’s Alexa, question answering
features of modern search engines Google and Microsoft Bing,
product recommendation and discovery features of e-commerce
marketplaces Amazon and eBay.

Knowledge graphs can express heterogeneous knowledge in
various domains in a usable form and satisfy many use cases for do-
mains ranging from linguistics [34], biomedicine [7] to finance [5].
Figure 1 is a toy example of a knowledge graph that captures user
attributes, e.g., age-group, and item/book attributes, e.g., genre, in
addition to the like relationship between them. A natural conse-
quence of such a generalizable representation is that they exhibit
the characteristics of the underlying data such as sparsity for some
entities or some types of entities, skew in the volume and types
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Figure 1: A toy example of a user-item knowledge graph
with four types of entities: user, book, user age-group, and
book genre. The entities are connected via four types of re-
lationships: prefers, in age-group, likes, and genre. Models
Book Recommender and Book Classifier recommends books
to users and identifies book genres respectively.

of relationships connecting entities. For example, the age-groups
relationship of all the people in the knowledge graph is not known.
These ubiquitous distributional challenges persist across several
domains [17, 20]. Thus, the constructed knowledge graphs are far
from complete and mandate continuous enrichment and curation.
Note that enriching the knowledge graph can help augment the un-
derlying data too [11]. We categorize the previous research efforts
into three distinct directions and describe our innovations.

The first is knowledge graph embedding [2, 30, 35], which at-
tempts to enrich the knowledge graph and incorporate latent struc-
tural proximities of nodes by transitively learning a range of sim-
ple heuristic patterns among the nodes such as symmetry, anti-
symmetry, composition and analogy (described in details in Sec-
tion 4.1). These patterns are, however, unable to distinguish the
different relation types and are applied in an equivalent manner to
all of them. This can lead to contradictory and incorrect inferences,
which may violate the domain knowledge. In our toy example, a
user may like a book, and the book may be connected to an author,



but this does not necessarily imply that the user likes the author. If
we have a more detailed external task model, which can provide us
this feedback, we can avoid making this incorrect inference. Thus,
our solution adopts the utility of these patterns, but more impor-
tantly, provides the ability to correct these mistakes across different
relation types using external model feedback.

The second direction views the knowledge graph as an oracle
and develops task-specific models that leverage existing connec-
tivity patterns to improve performance for tasks such as question-
answering [10] and recommendation [33]. The key challenge in this
scenario is that the view of the knowledge graph is not optimized
to the task-model’s specific architecture. Conversely, the inductive
task-models cannot be directly leveraged to densify or improve the
knowledge graph either. Our approach addresses this shortcoming
as well. We optimize the view of the knowledge graph so that it is
best suited to the specific task-model using counterfactual residual
learning, as described in Section 5.1.

A third recent direction includes some hybrid solutions that
bridge the first two directions for specific fixed tasks by simultane-
ously performing task augmentation and graph enrichment [3, 8].
Such solutions are often predicated on some very specific archi-
tectural assumptions about the nature of the task/task-model or
external feedback. They do not extend to the broader multi-task
setting where the different tasks correspond to the graph nodes’
subsets. They hence cannot be bi-directionally integrated with the
knowledge graph. We make no assumptions about the nature or achi-
tecture or training objective of the external task-model. We are thus
able to leverage a much more comprehensive range of task-models
to improve our knowledge graph.

Our paper proposes a holistic solution to subsume multi-task
learning and knowledge graph enrichment via multi-directional
knowledge transfer (model-to-graph, graph-to-model, and even
model-to-model via graph) with the notion of counterfactual as-
sociation learning. The key idea is to view each task model as an
intervention applied to the knowledge graph entities, much akin to
a patient receiving a specific medicine [15, 29]. The counterfactual
question then becomes: if we know how the patient reacted to one
of the two scenarios (receiving or not receiving the medicine), can
we use that outcome alone to accurately predict the counterfactual
scenario? This question is directly applicable to link prediction and
model enhancement tasks as two complementary aspects of the
factual-counterfactual question. When we apply a task-model to an
entity, the task-model predicts several connections for the entity.

In Figure 1, when we use Book Recommender to recommend
books for the user U3, we get B4 as a recommended book. This
recommendation enables us to create a new connection between
the user U3 and the book B4—see Figure 2. Such connections are
counterfactual because the nature of the task-model biases them.
Hence, we can formulate it as a causal inference question [19, 24] of
whether the suggested links originate purely from the task or task-
model eccentricities or vice-versa. The counterfactual question that
we propose here is: how can we leverage the task or intervention-
biased connections to enrich the underlying knowledge graph, i.e.,
infer the factual links? Conversely, the opposite direction is: given
the factual links of an entity, what are the likely counterfactual
links suggested by the model? While the counterfactual to factual
link mapping direction enables us to enrich the knowledge graph,
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Figure 2: We use Book Recommendermodel to infer counter-
factual edges (shown using dotted lines), thereby enriching
the KG. Primary counterfactual links are inferred directly
from the model. Secondary counterfactual links are infered
from one-hop neighbours of the primary links.

the opposite direction lets us improve the task models based on the
graph’s factual links. In this way, the forward and reverse trans-
formations enable bi-directional knowledge transfer between task
models and the knowledge graph.

In this paper, we make the following contributions:
MergingMulti-Task Learning andKnowledge Graph Enrich-
ment/Embedding: This paper proposes a holistic view of knowl-
edge graphs andmulti-task learning that permits formulti-directional
transfer of knowledge between domain-specific knowledge graphs
and task-models. This holistic view overcomes the key limitations
of past work. While enabling for bidirectional knowledge transfer,
we also do not make assumptions about the nature of the specific
task-models, architectures, or objectives.
Generalizability: The proposed framework is highly generaliz-
able; we make no assumptions about the data-domain or the task-
models connected to it. As a result, we can integrate very diverse
tasks, and their model architectures through a common set of un-
derlying knowledge embeddings. In our experiments, we exhibit
this capability with two very distinct models, one recommenda-
tion model connecting users and items, and a second item-content
model that attempts to predict the most likely words to describe a
specific item. We show that we can leverage counterfactual updates
obtained from the prediction model to significantly improve the
recommendation model’s performance for sparse users (in other
words, the item-word links are leveraged to form user-item links).
Modeling theMulti-Task Updates to the Graph as a Residual
Function: We identify the connection between multi-task knowl-
edge graph updates and covariate domain shift theory [15], which
permits us to model different task-specific distributions with the
same underlying knowledge graph via residual learning, in a very
inexpensive manner.
Strong Experimental Results: We demonstrate strong experi-
mental results with knowledge graphs constructed from two large
distinct knowledge graphs, induced on the Google Local Reviews
Dataset 1[9, 28] and the Yelp Challenge Dataset 2. We show how to

1http://cseweb.ucsd.edu/~jmcauley/datasets.html
2https://www.yelp.com/dataset/challenge
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leverage two very different external task models, word2vec [23]
and a context-aware recommender [16] to densify and improve
the knowledge graph, and also simultaneously perform model-to-
model cross-training (i.e., use the first model to generate feedback
that updates the graph, which can then be used to improve the
second model). On the whole, we show strong results on graph
completion (5% relative to state of the art embedding baselines) and
show significant potential for knowledge transfer.

We now summarize related work, formalize our problem, de-
scribe our solution, and evaluate the proposed framework.

2 RELATEDWORK
Knowledge graphs are essential resources for many AI tasks today.
While one branch of research considers the knowledge graph as an
oracle and develops machine learning models that leverage existing
connectivity patterns to improve task outcome, they often suffer
from incompleteness. A variety of representation-based/embedding
methods - tensor factorization based and neural network based -
have been developed that attempts to enrich the knowledge graph
and incorporate latent structural proximities of nodes by transi-
tively learning a range of simple heuristic patterns among the
nodes [2, 13, 14, 21, 26, 27, 30, 35]. These patterns are unable to
distinguish the different relation types and are applied in an equiv-
alent manner to all of them. Thus, it can lead to contradictory and
incorrect inferences, which in turn, may violate the domain knowl-
edge. Additionally, some of these methods are also not suited to
handle unbalanced heteerogeneous graphs.

Several recent efforts have attempted to leverage the knowledge
graph structure for recommendation [1, 31, 33]. The methods are
either path-based that feed the high-order information to the pre-
dictive model or regularization-based that leverages the network
structure to regularize the recommender model learning. The meth-
ods are typically not optimized for the recommendation objective.
Conversely, the inductive task-models cannot be directly leveraged
to densify or improve theknowledge graph either. Other tasks such
as search personalization [25] and question-answering [10] also
suffer from similar drawbacks.

In this paper, we propose a holistic solution that addresses the
above issues by subsuming multi-task learning and knowledge
graph enrichment via multi-directional knowledge transfer via
counterfactual association learning.

3 PROBLEM DEFINITION
In this section, we present the distinct components associated with
our knowledge graph representations. This representation space
establishes a consistent interface between the set of factual links
across entities and the task-models that make predictions associat-
ing different subsets of the interacting entities in the knowledge
graph. However, there are several fundamental differences between
the modeling effort for these two types of edges. While we can di-
rectly incorporate the factual edges in the node representations, the
edges suggested by task-models are counterfactual. In Section 4, we
describe our reasoning framework to incorporate the counterfactual
edges and infer changes in the node representations.
Knowledge Graph Notations:We consider a heterogeneous di-
rected knowledge graph with multiple types of entities (or sets of

nodes) and relations.Let us represent entity types as:

E1 (e.g., users), E2 (e.g., items) · · · E |E |

where E = {E1, E2 · · · E |E |} is the set of all entity types. The set of
all nodes in the graph is ∪E𝑖 . Let R = {R1,R2 · · ·R |R |} denote the
set of relations where each relation R𝑟 : E𝑟1 → E𝑟2 is a collection of
links between two entity types E𝑟1, E

𝑟
2 ∈ E. Note that, two different

relations can exist between the same pair of entity sets.
We denote each edge as (𝑒1, 𝑟 , 𝑒2) where 𝑒1 ∈ E𝑟1, 𝑒2 ∈ E𝑟2 denote

the head and tail entities respectively and 𝑟 their relation-type. We
denote the respective d-dimensional entity embeddings by adding
an overhead arrow to the above notation, i.e., ®e1, ®e2. Each relation-
type 𝑟 is described by its head and tail projectors (®p𝑟1, ®p

𝑟
2), which are

also d-dimensional like the entity embeddings.
Task Model Notations: For simplicity, we only consider discrete
prediction models in our analysis. However, regression models can
be discretized to fit a similar abstraction. We consider each pre-
diction model M 𝑗 to take an input entity 𝑒1 ∈ E𝑗1 and produce a
predicted output entity 𝑒2 ∈ E𝑗2, thus inducing a connection across
the two entity sets E𝑗1, E

𝑗

2 ∈ E depending on its specific prediction
task. For example, a recommendation model could connect the user
nodes to the respective recommended item nodes in our knowl-
edge graph. We will refer to these connections as task-biased or
intervention-biased counterfactual links since they may not exist
in the knowledge graph, but are predicted by the task model. For
simplicity, we only consider task-models that establish connections
between pairs of entity sets, although the proposed framework is
general to multi-variate scenarios.

In the rest of Section 4, we use the subscripts 1 and 2 to denote
head and tail entities of a link, while we use the notation 𝑟 to denote
a relation type. Analogously, we use the notation 𝑗 to denote a task
model, M 𝑗 : E𝑗1 → E𝑗2.

4 KNOWLEDGE GRAPH EMBEDDINGS
This section first describes a base embedding model to form a highly
scalable and expressive embedding space for multi-task augmen-
tation. Then, we show how to selectively combine the covariant
aspects of different prediction models with the same latent embed-
ding space. Finally, we introduce our approach to leverage node
embeddings for cross-modal transfer across different tasks.

4.1 Embedding Model
Since knowledge graphs are often incomplete and exhibit a lack of
links for a substantial proportion of the nodes, embedding models
attempt to infer missing links via proximities in the latent space.
Sun et al. [30] describe three fundamental connectivity pattens,
symmetry/antisymmetry, composition and inversion which can be
stacked by the learned models to encode higher-order patterns:

• Symmetry: (𝑒1, 𝑟𝑎, 𝑒2) =⇒ (𝑒2, 𝑟𝑎, 𝑒1)
• Anti-Symmetry: (𝑒1, 𝑟𝑎, 𝑒2) =⇒ not (𝑒2, 𝑟𝑎, 𝑒1)
• Analogy: (𝑒1, 𝑟𝑎, 𝑒2) and (𝑒3, 𝑟𝑎, 𝑒4) =⇒ (𝑒1, 𝑟𝑏 , 𝑒3) / (𝑒2, 𝑟𝑐 , 𝑒4)
• Inversion: (𝑒1, 𝑟𝑎, 𝑒2) =⇒ (𝑒2, 𝑟𝑏 , 𝑒1)
• Composition: (𝑒1, 𝑟𝑎, 𝑒2) and (𝑒2, 𝑟𝑏 , 𝑒3) =⇒ (𝑒1, 𝑟𝑐 , 𝑒3)

While these patterns enable a good first-cut link selection, they do
not distinguish the different relation types and are applied in an
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equivalent manner to all of them. For example, the learned patterns
may often contradict domain knowledge for some types of links.
Prior knowledge graph embedding methods do not provide any
mechanism to overcome these challenges in large heterogenous
knowledge graph. Our fundamental hypothesis is that leveraging
the inductive bias of an external model designed for a specific task
can help filter the encoded patterns. Further, in a heterogenous
knowledge graph, the degree of sparsity may not be evenly spread
across the different node and relation modalities. Thus, cross-modal
transfer is particularly important in any enrichment or completion
effort, specifically, the following type of cross-modal learning:

• How do we leverage (𝑒1, 𝑟𝑎, 𝑒2) for predictions of the form
(𝑒1, 𝑟 ′, 𝑒 ′), (𝑒2, 𝑟 ′, 𝑒 ′), (𝑒 ′′, 𝑟 ′′, 𝑒1), (𝑒 ′′, 𝑟 ′′, 𝑒2)?

Note that the answer to the above form of cross-modal learning
is specific to the relation types 𝑟𝑎, 𝑟 ′, 𝑟 ′′ as well the entity nodes
and thus can be answered effectively by leveraging external models
that are designed and trained for prediction tasks involving either
these entities or relations.

In addition to these properties, the sizes of most knowledge
graphs can exceed millions of nodes, and billions of edges. Thus
efficient parallelization in the embedding model is of utmost im-
portance for most practical applications. DistMult [36] is one of
the most successful models in the literature, owing to its simplicity
and ability to be block optimized as described by Lerer et al. [18].
However, the DistMult model’s key weakness is its inability to
model anti-symmetry and composition owing to its formulation,
as pointed out in Rotate [30]. On the other hand, Rotate does not
treat the head and tail entities uniformly and thus poses scalability
constraints with regard to some block optimizations [18]. In our
work, we consider both these perspectives in the base embedding
model, which is subsequently augmented in the multi-task setting.
We essentially apply a simple modification to DistMult to capture
both anti-symmetry and composition in the heterogeneous node
setting.

The basic DistMult model follows a bilinear function with a
learned diagonal projector matrix (P𝑟 ) representing the relation
type 𝑟 . Thus the likelihood of an edge (𝑒1, 𝑟 , 𝑒2) is given by:

L(®e1, 𝑟 , ®e2) = ®e𝑇1 P𝑟 ®e2 (1)

Due to this transformation’s symmetric nature, anti-symmetry
and inversion are hard to encode in this form. Instead, we apply a
simple modification, as explained next. We can change the above
function’s symmetric nature by describing a head and tail dual-
projector form for each relation. Note that this form only involves
a few additional parameters, namely twice as many parameters for
the relation embeddings. However, in most knowledge graphs, the
types of relations are several orders of magnitude smaller than the
number of nodes, and thus this parameter overhead is negligible.
Thus we define the likelihood of an edge (𝑒1, 𝑟 , 𝑒2) as:

L(®e1, 𝑟 , ®e2) = 𝑠𝑖𝑚((®e𝑇1 ⊗ ®p𝑟1)(®e𝑇2 ⊗ ®p𝑟2)) (2)

It is easy to see that this change enables composition, inversion,
and anti-symmetry. The proof is relatively straightforward.
Anti-Symmetry: Consider relations 𝑟𝑎 to be anti-symmetric, so
that, (𝑒1, 𝑟𝑎, 𝑒2) =⇒ not (𝑒2, 𝑟𝑎, 𝑒1) We can encode this in our
likelihood term with orthagonal projectors for the head and tail,
i.e., ®p𝑟1 ⊥ ®p𝑟2 so that we take the orthagonal projections of the head
and tail entity when the direction of the relation is reversed.
Inversion: Consider relations 𝑟𝑎, 𝑟𝑏 to be inversions of each other,
so that, (𝑒1, 𝑟𝑎, 𝑒2) =⇒ (𝑒2, 𝑟𝑏 , 𝑒1) We can encode this in our
likelihood term by switching the head and tail projectors, i.e.,
®p𝑟𝑎1 = ®p𝑟𝑏2 and ®p𝑟𝑎2 = ®p𝑟𝑏1 . It is easy to verify that this would result in
L(®e1, 𝑟𝑎, ®e2) = L(®e2, 𝑟𝑏 , ®e1) which results in the desired inversion.
Composition: Consider relations 𝑟𝑐 to be composed of 𝑟𝑎 and 𝑟𝑏 ,
so that, (𝑒1, 𝑟𝑎, 𝑒2) and (𝑒2, 𝑟𝑏 , 𝑒3) =⇒ (𝑒1, 𝑟𝑐 , 𝑒3) We can encode
this in our likelihood terms with the following simple switch, i.e.,
®p𝑟𝑐1 = ®p𝑟𝑎1 and ®p𝑟𝑐2 = ®p𝑟𝑎2 . This would transitively align the composed
relation with the head and tail entities 𝑒1 and 𝑒3.



Finally, we also add a identity-matrix scaling factor to the relation
projectors so that we can retain a percentage of the original node
embedding dimensions in the projected versions as well:

L(®e1, 𝑟 , ®e2) = 𝑠𝑖𝑚((®e𝑇1 ⊗ (®p𝑟1 + 𝑠I))(®e𝑇2 ⊗ (®p𝑟2 + 𝑠I)) (3)

While the notion of head and tail projectors is also present in
the TransD [12] model, our similarity function, which is just a dot
product, enables block-sampling and optimization advantages. As a
result, our model is scalable with the block optimizations proposed
by Lerer et al. [18] and expressive. Our model’s scalable and expres-
sive nature forms an adaptive and scalable base embedding space
to enable the multi-task and multi-modal transfer of knowledge
from task-specific models.

4.2 Multi-Task Augementation
We briefly revisit our definition of task models and provide a sim-
plified abstraction for the rest of the paper. Consider a consider
discrete prediction modelsM 𝑗 to take an input entity 𝑒 𝑗1 ∈ E𝑗1 from
the knowledge graph, and produce a predicted output entity 𝑒 𝑗2 ∈ E𝑗2,
thus inducing a connection across the two entity sets E𝑗1, E

𝑗

2 ∈ E.
Note that the specific prediction task 𝑗 modeled byM 𝑗 may vary
even between the same pair of entity sets E𝑗1, E

𝑗

2 ∈ E. For instance,
a POI recommendation model could connect the user entities to the
preferred venue nodes in our knowledge graph. Simultaneously,
a location-based recommender could produce a different map be-
tween the same two entity sets, since it has a different objective
function. Thus each task-model generates a different mapping be-
tween the two spaces, depending on its inductive bias and task
objective. We will refer to these mappings as task-specific counter-
factual links since they may not exist in the knowledge graph but
are rather predicted by the task-model. For simplicity, we only con-
sider task-models that establish connections between pairs of entity
sets, although the proposed framework is general to multi-variate
scenarios and regression with appropriate discretization.

4.2.1 Viewing Task-Models as Interventions. Our key insight is to
consider each task-specific model as an intervention on a specific
subset of nodes in the knowledge graph, analogous to a medical
treatment applied to a patient. Note that the specific intervention
depends on both the task (or objective) of the trained model and
the model architecture, i.e., its inductive bias. Our key objective
in the rest of this section is to develop a consistent pathway to
enrich or complete the knowledge graph based on the intervention
biased predictions. Clearly, these predictions should not be treated
equivalently. Some task-models are likely to predict better the ex-
istence of certain types of links in the original knowledge graph.
We refer to these intervention biased links as counterfactual links,
in contrast to the factual links that exist in the knowledge graph.
The counterfactual links may signal the existence of a factual link,
depending on the applied intervention. We also note that all of the
data used to train the task-models may already be present in the
knowledge graph (e.g., a subset of the links in the graph), and does
not necessarily involve any additional features or node attributes.

4.2.2 Intervention-Biased Counterfactual Links. Links in the base
knowledge graph are the factual links across entities. At the same

time, we refer to the links suggested by the task models as counter-
factual links, from the intervention perspective. Specifically, task
model M 𝑗 takes an input entity 𝑒

𝑗

1 ∈ E𝑗1 and predicts the output
entity 𝑒 𝑗2 ∈ E𝑗2 under task 𝑗 . We refer to this as the primary counter-
factual link, (𝑒 𝑗1 , 𝑒

𝑗

2 ), since it is directly predicted by model M 𝑗 . In
contrast to the factual links across entities in the knowledge graph,
the counterfactual link suggested by the model is intervention-
biased. Thus, to employ the model predicted edges to enrich the
knowledge graph, we need to develop a bias-elimination procedure
that can extract the relevant information from each task-model and
enrich the knowledge graph.

4.2.3 Cross-Modal Counterfactual Links. Let us revisit the task
model,M 𝑗 , which predicts intervention-biased counterfactual links
of the form (𝑒 𝑗1 , 𝑒

𝑗

2 ), where 𝑒
𝑗

1 ∈ E𝑗1 and 𝑒
𝑗

2 ∈ E𝑗2. We can evaluate
additional counterfactual links by sampling nodes in the one-hop
neighborhood of 𝑒 𝑗2 and connecting them to 𝑒

𝑗

1 , and vice-versa.
This enables us to infer connections across entities in two different
correlated tasks and permit models to model transfer learning. Note
that the counterfactual links may not have any associated relation,
while the knowledge graph’s factual links always do.

4.3 Creating Intervention-Biased
Counterfactual Links

Each node in the knowledge graph is updated via the feedback from
the external prediction models. The models supply intervention-
biased counterfactual edges for each node, and these edges are
appropriately leveraged to update the underlying node embeddings
of the knowledge graph nodes.

We now present the knowledge transfer to node embeddings
from the perspective of one specific focus node, e𝑖 ∈ E𝑖 . Consider
task models M 𝑗 : E𝑗1 → E𝑗2 following our notations from the
previous subsection, i.e., different task-models with the input entity
set E𝑖 in which the focus node e𝑖 lies. Each taskmodel now produces
an output prediction corresponding to the input e𝑖 . Consider the
following set of predicted outputs from the task models:

• 𝑒𝑖 → M 𝑗1 → 𝑒 𝑗1 ∈ E2
𝑗1

• 𝑒𝑖 → M 𝑗2 → 𝑒 𝑗2 ∈ E2
𝑗2

• 𝑒𝑖 → M 𝑗3 → 𝑒 𝑗3 ∈ E2
𝑗3

Each task may provide a distinct modality of edge connections, i.e.,
the sets E2

𝑗1, E
2
𝑗2 and E2

𝑗3 may be distinct from each other.
Let us now consider the set of intervention-biased link inferences

we canmake from these predictions. First, the primary links, namely
(𝑒𝑖 , 𝑒 𝑗1), (𝑒𝑖 , 𝑒 𝑗2), and (𝑒𝑖 , 𝑒 𝑗3). However, our inferences are not
limited to these primary links alone. Let us now consider the set of 1-
hop neighbors of each of the predicted primary connections, i.e., the
1-hop neighborhoodN𝑗1 for 𝑒 𝑗1,N𝑗2 for 𝑒 𝑗2 andN𝑗3 for 𝑒 𝑗3. Further,
let us denote these one-hop neighbors as 𝑛 𝑗1 ∈ N𝑗1, 𝑛 𝑗2 ∈ N𝑗2 and
𝑛 𝑗3 ∈ N𝑗3. These neighboring nodes can belong to different entity
sets which may not be the same as E2

𝑗1, E
2
𝑗2 or E

2
𝑗3. As a result, these

transitive 1-hop connections result in several new cross-modal
inferences in addition to the primary counterfactual links. These
cross-modal links are also intervention-biased by association to the
primary counterfactuals,(𝑒𝑖 , 𝑒 𝑗1), (𝑒𝑖 , 𝑒 𝑗2) and (𝑒𝑖 , 𝑒 𝑗3), from which



they originate. We refer to this new transitive set of cross-modal
links as the set of secondary counterfactual links.

Thus, for each predictive model, namely M 𝑗1, M 𝑗2, and M 𝑗3,
we obtain sets of both primary and secondary intervention-biased
counterfactual links for the focus entity 𝑒𝑖 , which we can leverage
to update the respective knowledge graph node embeddings. We
will refer to the sets of counterfactual links for these three models,
with the focus entity 𝑒𝑖 as C𝑗1(𝑒𝑖 ), C𝑗2(𝑒𝑖 ), and C𝑗3(𝑒𝑖 ) respectively.

4.3.1 Modular Interface with the Task-Models. The overall mod-
ularity of our knowledge space representation approach derives
from the formulation of the above edge likelihood functions, purely
dependent on the set of entities, entity types, relation types of links,
and the specific links in the knowledge graph, while being com-
pletely agnostic to how the links are added or suggested by the task
models. The key intuition is to maintain an independent representa-
tion space, which is updated by external models by leveraging their
counterfactual edge suggestions. We thus keep a consistent inter-
face between the knowledge representation space and all external
task models.

4.4 Individualized Treatment Effect for KG
Nodes

We now briefly talk about our perspective to leverage the set of
counterfactual links for node embedding updates. We closely follow
the Rubin-Neyman causal model in our description [15, 29]. Let us
consider the set of factual links of the focus entity e𝑖 ∈ E𝑖 , that are
present in the knowledge graph, and are known with certainty.

Consider a specific factual link (𝑒𝑖 , 𝑟𝐹 , 𝑒 𝑗 ). Under our base em-
bedding model, the likelihood of this factual link is given by:

L(®e1, 𝑟 , ®e2) = 𝑠𝑖𝑚((®e𝑇1 ⊗ (®p𝑟1 + 𝑠I))(®e𝑇2 ⊗ (®p𝑟2 + 𝑠I)) (4)

How do we then estimate the likelihood of a counterfactual link?
A simple approach is to estimate the likelihood of any counterfac-
tual link, (𝑒𝑖 , 𝑟𝐶𝐹 , 𝑒 𝑗 ) suggested by a task model using the same base
likelihood model:

L(®e1, 𝑟𝐶𝐹 , ®e2) = 𝑠𝑖𝑚((®e𝑇1 ⊗ (®p𝑟𝐶𝐹

1 + 𝑠I))(®e𝑇2 ⊗ (®p𝑟𝐶𝐹

2 + 𝑠I)) (5)

The counterfactual relation-type 𝑟𝐶𝐹 (of the counterfactual link)
may or may not be predicted by the external model. We provide
three heuristics to address the case where 𝑟𝐶𝐹 is not known:
Relation-Agnostic (RA) Counterfactual Likelihood:

LRA𝐶𝐹 (®e1, ®e2) = | |®e1 ⊗ ®e2 | | (6)

where | | denotes a suitable norm function such as L2 distance or
hinge loss.

The intuition of LRA𝐶𝐹 is to maximize the dimensions along
which the two entity embeddings match. This strategy effectively
increases the likelihood of any valid relation-type between the
entity pair depending on the projection component, as long as the
different relation-types are not anti-correlated.
Preferred-Relation (PR) Counterfactual Likelihood:

LPR𝐶𝐹 (®e1, ®e2) = argmax
𝑟 |R𝑟 :E𝑟1→E𝑟2

𝜎((®e1 ⊗ ®p𝑟1).(®e2 ⊗ ®p𝑟2)) (7)

LPR𝐶𝐹 only considers the most-likely relation-type for any
pair of entities in the likelihood estimation. This formulation is

much more reliable than LRA𝐶𝐹 for pairs of entity types that
have anti-correlated relations between them.
Relation-Sum (RS) Counterfactual Likelihood:

LRS𝐶𝐹 (®e1, ®e2) =
∑

𝑟 |R𝑟 :E𝑟1→E𝑟2

𝜎((®e1 ⊗ ®p𝑟1).(®e2 ⊗ ®p𝑟2)) (8)

LRS𝐶𝐹 amortizes the gradients across all the relation-types
between any pair of entity sets.

However, more fundamentally, all the above likelihoods assume
that every suggested counterfactual link is well aligned to the fac-
tual set of links of each node. This may not hold if the set of task-
models are trained with very distinct training objectives, or they
learn fundamentally different views of the underlying node space
owing to either their inductive biases or the training objective. In
such a case, the counterfactual likelihood, L𝐶𝐹 (®e1, ®e2) (where L
is 𝐿𝑅𝑆 , 𝐿𝑃𝑅, or 𝐿𝑅𝐴), must account for the biases introduced by
the specific task model into the counterfactual links suggested by
it. This equation would hold even if the counterfactual links have
specific relation types 𝑟𝐶𝐹 associated with them. We propose to
view this bias as a fundamental distributional shift on the latent
node features (note that in the absence of node attributes, the latent
node features only include the node embeddings learned by our
base embedding model via Equation (3)). This view is grounded
in the notion of individualized treatment effect [15], wherein we
evaluate the effect of an intervention on a specific node. More
concretely, let us consider the base embeddings of entity set E𝑖
to be drawn from a factual distribution (that satisfies the factual
likelihood L(®e1, 𝑟𝐹 , ®e2)) in Equation (3) as follows:

®e1 ∼ 𝑃𝐹 (E𝑟𝐹1 )

®e2 ∼ 𝑃𝐹 (E𝑟𝐹2 )
(9)

Conversely, the node embeddings that satisy the counterfactual
links drawn from each task-modelM 𝑗 , as described in the previous
subsection, induce a different distribution in the embedding space
for the same nodes, ®e1, ®e2, depending on the objectives and inductive
biases of model M 𝑗 :

®e1 ∼ 𝑃𝐶𝐹𝑗 (E𝑗1)

®e2 ∼ 𝑃𝐶𝐹𝑗 (E𝑗2)
(10)

The above mismatch results in a clearly quantizable distribu-
tional difference in the factual and counterfactual embedding dis-
tributions for each task model M 𝑗 for each entity set E, which can
be given by:

∆𝑗 (𝑃𝐹 (E), 𝑃𝐶𝐹𝑗 (E)) (11)
We now show how to learn this distributional difference via coun-

terfactual residuals, so that we can transfer knowledge between the
node embeddings and the respective task models.

4.5 Eliminating Distributional Biases via
Residual Learning

As described in the previous subsection, all versions of the counter-
factual likelihood are prone to the distributional mismatch problem
that we presented in the previous subsection. This implies that the
updates that are obtained by optimizing any of the above three



objectives, namely LRA𝐶𝐹 , LPR𝐶𝐹 and LRS𝐶𝐹 are likely to
differ depending on the task model M 𝑗 that was used to create the
counterfactual links. As a result, we must learn the correspoding
distributional differences and account for them when we update
the underlying knowledge graph embeddings.

This is a manifestation of a covariate shift, a special case of
domain adaptation [6] and can be addressed via residual learning.
Specifically, we can zoom into the respective counterfactual link
likelihoods:

LPR𝐶𝐹
(𝑒1,𝑒2) = argmax

𝑟 |R𝑟 :E1→E2

𝜎((®e1 ⊗ ®p𝑟1).(®e2 ⊗ ®p𝑟2)) (12)

We must view the above equation as transforming a domain-
adapted or intervention-adapted variation of the node embedding
instead of the direct node embedding. Under this consideration, the
intervention adapted embeddings can be given as follows:

®e𝑗1 = ®e1 + 𝛿
𝑗

E1
(®e1)

®e𝑗2 = ®e2 + 𝛿
𝑗

E2
(®e2)

(13)

Here, we learn the residual functions 𝛿 𝑗E1
, 𝛿 𝑗E2

to optimize for the
components of the underlying embeddings of both the entity sets
E𝑗1, E

𝑗

2 that are best captured by the counterfactual links frommodel
M 𝑗 , and maximize separation for the embedding dimensions that
are inversely impacted by the model intervention. Note that the
residual functions 𝛿 𝑗E are specific to both the model M 𝑗 as well as
the entity set E, since each entity set is impacted differently by the
model intervention.

The LPR likelihood term, LPR𝐶𝐹
(®e1,®e2) from Equation (7) can then

be viewed as optimizing the bias-adapted version of the focus node
embeddings as well as its connections. In other words, we are now
optimizing LPR𝐶𝐹

( ®e′1, ®e′2)
where ®e𝑗1 = ®e1 + 𝛿

𝑗

E1
(®e1) is backpropagated

instead of ®e1, and likewise for ®e2.
Thus, to learn the above residual function 𝛿 𝑗E, we need to learn the

embedding dimensions that must be bias-corrected to account for
the intervention-bias of modelM 𝑗 . We use a single learnable neural
network layer for each residual function 𝛿

𝑗

E. For our experiments,
we used a linear form with tanh activation.

𝛿
𝑗

E1
(®e1) = tanh(W𝑗

E1
®e1 + b𝑗

𝐸1
) (14)

The motivation for the above from of 𝛿 is grounded in the notion
of decreasing returns - We hypothesize the model interventions to
produce a scaled effect on the distributional characteristics of each
node, which can be captured by thematrixW𝑗 , while the tanh function
changes the shape of the corresponding dimension-discount, i.e., the
scaling factor for each dimension is a tanh shaped learnable receptive
curve.

We describe our training objectives to learn all the parameters
in the next section.

4.6 Discrepancy Distance Regularization
We do not make any assumptions about the underlying feature
distributions of nodes in the knowledge graph. Given the set of
node attributes, or in the case of purely structural embeddings
like ours, we aim to learn the set of features that vary across the

factual and counterfactual distributions with our task-specific and
entity-type specific residual functions, 𝛿 𝑗E, in order to obtain the
counterfactual views of each node embedding:

®e𝑗1 = ®e1 + 𝛿
𝑗

E1
(®e1) (15)

In other words, residuals that reduce the discrepancy between
the feature distributions (i.e., the node embeddings) across the
factual and counterfactual domains should not bias to “unreliable”
features of the node embeddings. For example, if a recommendation
model heavily favors high degree item nodes, the resulting residual
function 𝛿 𝑗E1

(®e1) where E1 is the item set, may attempt to completely
eliminate this feature difference. As a result, the underlying item
node embeddings ®e1 may not learn any informative covariates from
the counterfactual links, if all the difference is explained by the
residuals alone.

To prevent this degenerate solution, where the node embedding
does not receive any informative task-model updates, we leverage
the notion of discrepancy distance. This distance measure serves
as a strong regularizer to prevent overfitting the learned residual
to any specific node feature, much akin to the discrepancy dis-
tance minimizers proposed in [15, 22]. As a result, components of
the counterfactual distribution can partially flow to the base node
embedding ®e1.

Past work has shown how to derive generalization bounds with a
well-defined empirical discrepancy distance for a limited hypothesis
class of models [22]. In our work, however, we do not restrict the set
of task-models to any specific hypothesis class, but instead propose
a non-linear L1 norm on the residual value across all task-models,
with a task and entity type specific weight factorW𝑗

E as follows:

disc(𝛿 𝑗E1
(e1)) = | |𝜎(W𝑗

E1
× 𝛿

𝑗

E1
(e1))| | (16)

We now describe how the above components fit into an over-
all training strategy for graph-to-model and model-to-graph co-
training, and also model-to-model (via graph) cross-training.

5 TRAINING METHOD
In this section, we describe the overall training objective and the
procedures for simultaneous graph embedding updates and model
training and the transfer of knowledge from onemodel to a different
model by updating the respective node embeddings.

5.1 Learning the Bias-Elimination Residuals
As described previously, the objective of the bias-elimination resid-
ual is to learn the distributional differences in the node embeddings
across the original embedding space and the transformed embed-
ding space of each focus entity 𝑒1 ∈ E𝑗1, which has a primary
counterfactual link to 𝑒2 ∈ E𝑗2, the prediction output of model M 𝑗 ,
and secondary counterfactual links to the neighbors of 𝑒2, namely
N𝑒2 , as described in Section 4.3.

For a given randomly sampled subset of focus entites, S1 ⊆ E𝑗1,
we can generate all the possible primary and secondary coun-
terfactual links for each focus entity 𝑒1 ∈ S1 using the model
M 𝑗 as described in Section 4.3. Let us denote this set of links
as (𝑒1, 𝑒𝐶𝐹 ) ∈ CF𝑗 (S1). Similarly, we also collect the set of factual
links associated with the same subset of focus entities S1, which



we denote as (𝑒1, 𝑟 , 𝑒𝐹 ) ∈ F(S1). While the factual links are specific
to the focus entity set E𝑗1, the counterfactual links are specific to
the task-model subscript 𝑗 and the focus entity set E𝑗1.

In order to learn the distributional difference residual function
𝛿 𝑗 across the counterfactual and factual link sets, we optimize
the following two stochastic objective functions alternatingly (the
stochasticity emerges from the random selection of the focus entity
subset, S1 ⊆ E𝑗1):

L𝐹 =
∑

(𝑒1,𝑟 ,𝑒𝐹 )∈F(S1)
𝑠𝑖𝑚((®e𝑇1 ⊗ (®p𝑟1 + 𝑠I))(®e𝑇𝐹 ⊗ (®p𝑟2 + 𝑠I)) (17)

L 𝑗

𝐶𝐹
=

∑
(𝑒1,𝑒𝐶𝐹 )∈CF𝑗 (S1)

LPR𝐶𝐹 (®e1 + 𝛿
𝑗

E1
(®e1), ®e𝐶𝐹 + 𝛿

𝑗

E𝐶𝐹
(®e𝐶𝐹 ))

+ 𝑑1 × disc(𝛿 𝑗E1
(®e1))) + 𝑑2 × disc(𝛿 𝑗E1

(®e𝑖 )) (18)

Note that E𝐶𝐹 can be any entity set, and is not limited to just
E𝑗2, since we also used the one-hop neighbors of 𝑒2 in the counter-
factual set. While Equation (18), uses the Preferred-Relation (PR)
Counterfactual Likelihood from Equation (7), we could also choose
to apply the Relation-Agnostic (RA) version (Equation (6)) or the
Relation-Sum (RS) version (Equation (8)).

Optimizing Equation (17) and Equation (18) alternatingly results
in stochastic updates to the node embeddings ®e𝑖 of entities in the
focus set SE𝑖 , the residual functions 𝛿 𝑗 , and the discrepancy distance
measures, scaled by head and tail parameters 𝑑1, 𝑑2.

5.2 Graph and Model Co-Training
The previous technique works for one direction of knowledge trans-
fer, namely model-to-graph. It is possible to train node embeddings
and task-models bi-directionally if task-model is a white-box model
with a continuous differentiable objective function.

Note that each residual function is applied additively to the
node embeddings with the LPR𝐶𝐹 likelihood when we wish to
update the node embeddings and residual functions, as described
in Equation (18). However, in Equation (18), the model is held fixed,
i.e., the backpropagation updates are only carried out to the node
embeddings. The direction of information flow is from the task-
model to the node embeddings.

Conversely, if we wish to update the task modelM 𝑗 , we need
the gradients to flow from the node embeddings to the model rather
than the reverse. To achieve this effect, we can apply the same resid-
ual transformations to the node embeddings of factual links that
are present in the graph (instead of the counterfactual links), and
add them as a soft-alignment criterion to the model optimization
objective. Towards this goal, we again create a set of factual links
of focus entities S1 ⊆ E𝑗1, namely F(S1) as described in Section 5.1.
We can then apply the following soft alignments (SA 𝑗 (𝑒1, 𝑒𝐹 )) for
the entity pairs in each link ∑

(𝑒1,𝑟 ,𝑒𝐹 )∈F(S1):

SA 𝑗 (𝑒1, 𝑒𝐹 ) = L(®e1 + 𝛿
𝑗

E1
(®e1), ®e𝐶𝐹 + 𝛿

𝑗

E𝐶𝐹
(®e𝐶𝐹 )) (19)

Where L denotes the same basic factual likelihood equation de-
scribed in Equation (3).

Let the white-box model M 𝑗 have a differentiable objective
function O 𝑗 , as a function of it’s predicted outputs, i.e., the primary

counterfactual links. We can now add the following term to it:

Õ 𝑗 = O 𝑗 + 𝜆 𝑗
∑

(𝑒1,𝑟 ,𝑒𝐹 )∈F(S1)
(SA 𝑗 (𝑒1, 𝑒𝐹 ) −M 𝑗 (𝑒1, 𝑒𝐹 )) (20)

Here, we are overloading theM 𝑗 (𝑒1, 𝑒𝐹 ) term to indicate how the
model measures the proximities of its input and output entities.
Note that the second term here makes the model align its own
proximities to what is suggested using the residual functions and
node emebddings. The parameter 𝜆 𝑗 determines the strength of the
regularization applied to the model.

We do not need to have any residual discrepancies here since
we are not updating the residual parameters, but rather only the
model parameters of task-model M 𝑗 . We also permit an overall
hybrid update model where we simultaneously change the model
parameters as well as the node and residual functions by iteratively
and alternatingly optimizing all three objectives at the same time,
namely: Equation (17), Equation (18), and Equation (20).

5.3 Model to Model Cross-Training
Let us consider the following directionality ofmodel-to-model cross-
training: say M 𝑗1 → M 𝑗2 . For cross-training two models we need
the condition {𝐸 𝑗1

1 , 𝐸
𝑗1
2 } ∩ {𝐸 𝑗2

1 , 𝐸
𝑗2
2 } ≠ Φ to hold. Note that this

condition simply states that at least one of the entity sets whose
node emebddings are updated by the counterfactual likelihoods in
Equation (18) must be present across both the models.

We explain the model to model cross-training scenario with a
sample scenario where 𝐸 𝑗1

2 = 𝐸
𝑗2
1 .

• Learn the first cut set of node embeddings by leveraging
the factual links in the graph for all the entity sets, and
optimizing for the likelihood given by Equation (3).

• Select the first modelM1 in the above sequence and learn
the counterfactual residuals by alternating optimization with
the likelihoods in Equation (17) and Equation (18).

• In each prediction with a focus entity, i.e., 𝑒1 ∈ E𝑗11 , connect
the predicted output entity of M 𝑗1 , say 𝑒2 ∈ E𝑗22 , to all the
one-hop neighbors of 𝑒1, and use it to update the node em-
beddings while holding the residual functions learned above
as constant.

• Finally, with the node embeddings updated by M1, perform
the graph-to-model updates as described in Section 5.2 in
order to improve the performance of modelM2.

We observe that our overall framework is not theoretically ex-
changable since the order in which the models are cross-trained
with the knowledge graph also influences the final results. This
is a fundamental limitation of the causal interpretation of node
embeddings and counterfactual updates since we need to assign
a directionality of cause to effect. This limitation also applies to
the order in which models are co-trained and updated with the
knowledge graph in our framework.

6 EXPERIMENTAL RESULTS
In this section, we present our experimental analyses on diverse
multi-domain datasets and validate our framework.

First, we show that counterfactual enrichment with effective
task-models can significantly improve the quality of node embed-
dings for modalities with sparse connections by evaluating the



updated embeddings on the held-out link completion task. Next,
we show that co-training a context-aware neural recommendation
model with the knowledge graph leads to simultaneous embedding
updates and better model performance for nodes with lower de-
grees, although we notice a small degradation in the performance
for high-degree nodes. Additionally, we exhibit that we can signifi-
cantly improve the above context-aware neural recommendation
model by leveraging a distributed word embedding model using
the illustrated cross-training method. Finally, we do a scalability
analysis against publicly available baseline implementations, and
conclude with limitations and discussion.

6.1 Data Description, Setup
Google Local Reviews Dataset [9, 28]: Users rate businesses on
a 0-5 scale with temporal, spatial, and textual context available for
each review. We filter this dataset with a criteria of atleast 10 users
per business and 5 businesses per user recursively, and eliminate
all reviews with less than 3-star rating. The resulting dataset has
38,614 users and 26,922 businesses, and the following contextual
node types:

• Review Words
• Business Name Words
• Categories of the Business
• Price
• Location nodes - states, cities
• Temporal - time (binned inti 6-hour chunks), month, day

We create our knowledge graph by connecting all users to the
businesses they rated, the name and review words of the businesses
to each business, the review words, categories of visits and business
names to the users who rated them, the priceiness, locations and
times to businesses and users. On each of these links, we associated
a 1-4 level depending on the strength of the associations (measured
statistically on a per-user and per-business basis). This constitutes
our relation types.

Entity Type Count

Users 38,614
Businesses 26,922
Business Name Words 2,000
Review Words 5,000
Business Categories 650
Priciness 4
Time 23
Location 312
Total Links 7,325,614

Table 1: Google Local KG Statistics

Yelp Challenge Dataset: Users rate businesses on a 0-5 scale with
temporal, spatial, and textual context available for each review. We
filter this dataset with a criteria of at least 30 users per business and
10 businesses per user recursively, and eliminate all reviews with
less than 3-star rating. The resulting dataset has 25,3695 users and
69,738 businesses, and we obtain the following contextual nodes:

• Users
• Restaurants

• Review Words
• Business Attributes
• Location nodes - states, cities, lat-lon (binned using a KD-
tree)

• Temporal - time (binned by 6-hour chunks), month, day
We create our knowledge graph by connecting all users to the restau-
rants they rated, the review words and attributes of the restaurants
to each restaurant, the location nodes, the associated time nodes,
and likewise for the users as well. On each of these links, we as-
sociated a 1-4 level depending on the strength of the associations
(measured statistically on a per-user and per-business basis). This
constitutes our relation types.

Entity Type Count

Users 20,750
Restaurants 75,871
Review Words 2,000
Business Attributes 200
Time 23
Location 1,062
Total Links 10,102,877
Table 2: Yelp KG Statistics

Baselines: We used the following knowledge graph embedding
baselines as a representative set to evaluate the edge completion
task: TransE [2], DistMult [36], ComplEx [32], Rotate [30]. We used
the OpenKE implementations3 in Tensorflow/PyTorch with default
parameter settings, wherever applicable.

6.2 Task-Models
For both datasets, we used a pair of task models that both have
the same input entity-set (users), and different output entity sets
(business category and businesses respectively).

We train the distributional word2vecword-embeddingmodel [23]
on the set of review text words, business names and all the business
attributes text over all reviews in the dataset. We use the basic ver-
sion (non-transfer) of the context-aware recommender proposed
in Krishnan et al. [16] with the non-textual categorical links of
the users and businesses (as above) forming the context of each
review. To predict business category/attribute words for each user,
we take an average of their review word set embeddings, and map
the average to the closest business category words as learned by the
model. Note that to train the word2vec model, we use the review
text as context for the business attribute text.
Parameters: In both the above datasets, for the context-aware rec-
ommendation model [16], we use the author recommended param-
eters with 200-dimensional embeddings, while we use the gensim4

implementation of word2vec with a maximum 10-length window.
The additional parameters of our model, such as the discrepancy
scaling in Equation (18) were tuned with an exponential grid-search
approach (𝑒−5 to 𝑒0). The knowledge graph and counterfactual
residuals were also trained with 200-dimensional embeddings, and
implemented in Tensorflow, and run on a Tesla K80 GPU.

3http://139.129.163.161//
4https://pypi.org/project/gensim/



Link Type User to Business User to Category
Metric R @ 5 R@ 10 R @ 5 R@ 10
TransE 0.43 0.60 0.52 0.68
RotatE 0.59 0.72 0.65 0.80
DistMult 0.56 0.70 0.63 0.77
CompleX 0.57 0.70 0.61 0.76
MutatE-F 0.58 0.73 0.64 0.79
MutatE-CF 0.62 0.80 0.68 0.84

Table 3: Overall Link Prediction Results

Metrics for Link Prediction: In both the datasets, we attempt
to predict held-out links using the embeddings learned by our
models, as well as the embedding baselines. For each held-out link
of the form (𝑒1, 𝑟 , 𝑒2), we create several negative samples of the form
(𝑒1, 𝑟 , 𝑒2) and (𝑒1, 𝑟 , 𝑒2), i.e., with the same relation type and head and
tail entity types, however a randomly sampled entity for either the
head or tail. We then rank the entire list of negative samples against
the true link (𝑒1, 𝑟 , 𝑒2) under each embedding model, and measure
the Recall@K, NDCG@K values of the respective ranked lists.
Specifically, we measure the Recall@5, Recall@10 for two types
of heldout links - User → Business and User → Category word
(Attribute in case of yelp), for a 100-length ranked list.

6.3 Primary Results - Link Prediction
The above two knowledge graphs are evaluated on our link comple-
tion task. We randomly tag 20% of the user nodes as held-out nodes.
We then held out two types of links for these users - we held out
half of their user-business links, and half of their user-business at-
tribute/category word links. Note that these two link types directly
correspond to the two task models we used: The word2vec model
predicts user-business category word links and the context-aware
recommender predicts the user-business links.

For our model, we present two variants - MUTATE-F, which
only uses the factual nodes, and MUTATE-CF, which uses counter-
factual enrichment for the held-out user set. Specifically, the top-5
words predicted by the word2vec model, and the top-5 businesses
predicted by the recommender are used to form counterfactual
user-business and user-word links. We also trained all the baseline
embedding models on the same knowledge graphs, and attempted
to predict the same set of heldout links using their trained embed-
dings.
Key Observations from Table 3: The relative order of perfor-
mance of the baselines is roughly as expected, DistMult [36] per-
forms somewhat weakly owing to the inverse nature of some
relation-types in our graphs across user-context-business paths.
In contrast, our base model is able to overcome this challenge, and
performs comparably to the other baselines.

We also observe that our MUTATE-CF model strongly outper-
forms all the competing models on the User-Word link prediction
and User-Business link prediction tasks. This is unsurprising, since
the two external task models, namely word2vec and the context-
aware recommender, are able to much better predict the missing
links and enrich the graph, as compared to the heuristic or path-
based link completion approach in the other baselines. It is easy

𝜆 𝑗 𝑒−5 𝑒−4 𝑒−3 𝑒−2 𝑒−1

Word2Vec -5.6% -1.3% +8.1% -4.9% -18.6%
Context Recommender +2.8% -1.03% +5.4% -8.6% -28.9%
Table 4: Co-Training Performance Gains against the
Information-flow Parameter 𝜆 𝑗 from Equation (18)

to see how we are able to leverage the inductive biases of the spe-
cific models - While the word2vec model is able to interpret the
distributional properties of the review text, the context-aware rec-
ommender leverages the multiplicative predictors from the context
features. Also, note that these two models only use data that is al-
ready used to construct the Knowledge Graphs, and do not depend
on any external sources of data.

6.4 Co-Training Model with Graph
In this section, we describe our co-training approach for the rec-
ommender model with the knowledge graph. Specifically, we make
predictions from these models for users, and use these counterfac-
tual links to update the knowledge graph embeddings, as described
in Equation (17), and simultaneously, we make predictions from the
updated embeddings for the users, and use these to augment the loss
function of the recommender model, as described in Equation (19).
In this manner, we attempt to improve the model performance over
just training the model in isolation.

Although we did not achieve a dramatic performance differ-
ence, we clearly observe that overregularizing the model, as well as
underregularizing the model are suboptimal. In other words the co-
training proceeds best, when the regularizer 𝜆 𝑗 is set to an optimal
balance.

The numbers in Table 4 indicate the best performance improve-
ments we were able to achieve for the recommender model under
different settings of 𝜆 𝑗 . A higher value of 𝜆 𝑗 meant that the rec-
ommender was more constrained by the knowledge graph, while
a lower value meant that more information flows from the model
to the graph. Thus, we need an ideal tradeoff between the forward
and reverse information flow.

6.5 Cross-Training across Tasks
In this section, we describe our cross-training approach for the
recommendermodel by leveraging theword2vecmodel. Specifically,
we first train the word2vec model on the base data, then use it to
update the knowledge graph embeddings using the model to graph
knowledge transfer method described in Section 5.3, and finally use
the reverse direction to generate additional regularization for the
recommender model, i.e., knowledge now flows from the update
graph to the recommender model. Thus, the overall direction of
knowledge flow is as follows:

Mword2vec → Knowledge Graph → Mcontext-aware-recommender

Since the review text is strongly informative of the user em-
beddings and is also connected to the business embeddings owing
to their shared link structure, we were able to achieve noticeable
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Figure 4: Cross-Training performance gains for the context-
recommender with word2vec with respect to the parameter
𝜆 𝑗 set to varying values as in Equation (18). Informationflow
directions are:
(a) Mword2vec → KG → Mcontext-aware-recommender and
(b) Mcontext-aware-recommender → KG → Mword2vec.
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Figure 5: The gains of MUTATE-CF relative to MUTATE-F
on the two types of link prediction. In each case, wemeasure
the performance gains across 4 quartiles of users, arranged
by the density of that specific type of link for the user.

performance gains for the recommender model (see Table 4) after
we leveraged the sequence of update-steps described in Section 5.3.

6.6 Sparsity Analysis
In this subsection, we attempt to study the impact of counterfactual
updates on sparse and non-sparse nodes. Specifically, for both the
tasks, user-word link prediction and user-business link prediction,
we study the relative gains obtained by counterfactual updates, i.e.,
the difference in performance of MUTATE and MUTATE-F for the
different sparsity sets. Q1, Q2, Q3 and Q4 denote the four sparsity
quartiles for each respective user node, and we then measure the
average performance difference between MUTATE and MUTATE-F
for each quartile in Figure 5.

As expected, the strongest gains are obtained for sparse users,
i.e, users in quartiles Q3/Q4, since they lack the word-associations
to help us learn better node embeddings. Thus, the distributional
knowledge encoded in the word2vec model can significantly bridge
this gap in the knowledge graph and enrich the corresponding node
embeddings.

6.7 Limitations and Discussion
The two primary weaknesses of our work are non-exchangability of
the order in cross-training, and the assumption of homoschedastic
embeddings within each entity set. In other words, we assume that
a single residual function, conditioned on the node embeddings
of each node can fully account for the distributional differences
introduced by the task-models.

A few alternatives exist to capture heteroschedastic node em-
beddings, such as gaussian mixture embedding spaces [4], but they
are quite hard to implement efficienctly within a knowledge graph
neural network optimization framework. Further, since we do not
bound the nature of the task-models, we do not have a tight bound
to describe the discrepancy distance function in Equation (18). We
leave these challenges as future work to study the trade-offs be-
tween generalizability and theoretical guarantees on the residual
functions or overall exchangeability.

7 CONCLUSION
We propose a holistic view of knowledge graph and multi-task
learning that permits the multi-directional transfer of knowledge
between domain-specific knowledge graphs and task-models. The
proposed framework is highly generalizable and can integrate di-
verse tasks and model architectures through a common set of under-
lying knowledge embeddings. Our framework can also model differ-
ent task-specific distributions with the same underlying knowledge
graph via counterfactual residual learning. We demonstrate the
superiority of our solution over previous efforts. In the future, we
intend to study the trade-offs between generalizability and theoreti-
cal guarantees on the residual functions and overall exchangeability.
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