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ABSTRACT

Recommender Systems play an essential role in our daily lives, as
they affect how people navigate the vast amounts of products avail-
able in online services. The task of recommendation is to provide
users with a list of relevant items based on several so-called seed
items. Collaborative filtering methods (e.g., Factorization Machines)
have achieved great success in many real-world applications, due to
their simplicity, efficiency, and effectiveness. In general, these mod-
els rely on users’ historical profiles and recommend new items that
are similar to these ones each user has purchased in the past. This
iterative procedure of accumulating user feedback subsequently
improves their understanding of users’ preferences, resulting in
fine-tuning recommender systems.

Here we present a highly-scalablet Shallow Graph Neural Net-
works to capture long-range dependencies without increasing the
depths of GNNs. We mainly marries graph convolutions and clus-
tering methods to achieve effective local and non-local encoding.
To be specific, at each layer, graph convolutions are used to com-
pute node embeddings by aggregating information from their local
neighbors. the proposed model then performs k-Means clustering
in the embedding space to obtain graph-level representations (e.g.,
user/item centroids), which highly reduces the complexity.
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1 INTRODUCTION

Recommender Systems play an essential role in our daily lives,
as they affect how people navigate the vast amounts of products
available in online services [35, 47]. The task of recommendation
is to provide users with a list of relevant items based on several
so-called seed items. Collaborative filtering methods (e.g., Factor-
ization Machines [10, 24]) have achieved great success in many
real-world applications, due to their simplicity, efficiency, and ef-
fectiveness [2, 13, 25, 51]. In general, these models rely on users’
historical profiles and recommend new items that are similar to
these ones each user has purchased in the past. This iterative pro-
cedure of accumulating user feedback subsequently improves their
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understanding of users’ preferences, resulting in fine-tuning rec-
ommender systems.

Graph Neural Networks (GNNs) are being increasingly used in
the tasks of recommendation, owing to their theoretical elegance
and good performance [6, 12, 15, 28, 42, 47]. GNNs learn the rep-
resentation of a user/item through an iterative process of transfer-
ring, transforming, and aggregating the information from its neigh-
bors [19]. By considering user-item interactions as a bipartite graph,
GNNgs are thus able to obtain expressive representations of users and
items, and have achieved state-of-the-art performance. For exam-
ple, PinSage [47] combines random walks and graph convolutions
to generate item embeddings. NGCF [42] iteratively propagates
user and item embeddings to obtain the high-order collaborative
signals. LightGCN [12] simplifies the design of GNNs to make it
more concise for recommendation.

Despite the encouraging performance, many of GNNs use a fairly
shallow architecture to obtain node embeddings, and thus have
no ability to capture long-range dependencies in graphs [34]. The
main reason is that graph convolutions are naturally local operators,
i.e., a single graph convolution only aggregates messages from a
node’s one-hop neighborhoods [19]. Clearly, a k-layer GNN model
can collect relational information up to k-hops away, but cannot
discover the dependency with a range longer than k-hops away
from any given node. Therefore, the ability of GNNs to capture
long-range dependencies heavily depends on their depths.

While in principle deep GNNs should have more expressive abil-
ity to model complex graph structures, training deep GNNs poses
unique challenges in practice. First, it is computationally inefficient
since the complexity of GNNs is exponential to the number of lay-
ers, causing high demand on training time and GPU memory [4].
Second, it makes optimization difficult. Deep GNNs suffer from
the issues of over-fitting, over-smoothing, and possible vanishing
gradient [23]. These "bottleneck effects” may inhibit the potential
benefits of deep GNNs. Third, repeating GNN operators implicitly
assumes homophily! in graphs [53]. However, real-word graphs,
especially for implicit user-item graphs, are often complex and
exhibit a mixture of topological homophily or heterophily [18, 26].
Therefore, simply training deep GNN:ss is likely to have a drop in
performance if GNNs are not well regularized [22]. i.e., performing
more than 5-10 message passing steps has not shown consistent
improvements in many tasks [23].

In recent years, non-local neural networks have shed light on
capturing long-range dependencies in the field of computer vi-
sion [27, 33, 41, 43, 49, 54]. In particular, non-local neural net-
works [27] first measure the pairwise relations between query

'homophily means connected nodes have similar features, while heterophily indicates
connected nodes can have different features in graphs.
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Figure 1: An illustration of local and non-local message pass-
ing schemes. Considering the message between u; and uy,
the local operators need four layers to collect the message:
Uy « i3 < u3 « iy < uy, while our non-local operators only
require one layer: u; (ﬂ uy.

position and all positions to form an attention map, and then ag-
gregate the features by using self-attention mechanism [39]. This
choice of design allows messages to be efficiently communicated
across the whole images. Having this analogy, Geom-GCN [31]
proposes geometric aggregators to compute the Euclidean distance
between every pair of nodes. However, Geom-GCN is computation-
ally prohibitive for large graphs as it requires to measure node-level
pairwise relations, resulting in quadratic complexity. To remedy
this issue, the recently proposed NL-GCN [29] leverages attention-
guided sorting with a single calibration vector to redefine non-local
neighborhoods. Nevertheless, NL-GCN solely calibrates the output
embeddings of GNNs, which lacks adaptability. The purpose of this
work is to reap the benefits of GNNs while avoiding such limitations.

Present Work: Here we present a highly-scalablet Shallow Graph
Neural Networks to capture long-range dependencies without in-
creasing the depths of GNNs. We mainly marries graph convolu-
tions and clustering methods to achieve effective local and non-local
encoding. To be specific, at each layer, graph convolutions are used
to compute node embeddings by aggregating information from their
local neighbors. the proposed model then performs k-Means clus-
tering in the embedding space to obtain graph-level representations
(e.g., user/item centroids). A non-local attention operator is further
proposed to measure the similarity between every pair of (node,
centroid), which enables long-range messages to be communicated
among distant but similar nodes.

Figure 1 illustrates how the long-range messages are propagated
via local and non-local graph convolutional operators, respectively.
Given target user uj, the local operators in vanilla GNNs require
two layers (e.g., u1 < i3 < u3) to aggregate information from its
2-hops user u3, and four layers (e.g., u1 < i3 <= u3 < iy < uy) for
its 4-hops user uz. In contrast, our proposed non-local operators
perform fast clustering on all users via Optimal Transport (OT) [5],

and compute the attention once per cluster. As such, one single
layer is sufficient to collect cluster-level messages from all users
(eg. ulﬂug and ug ﬂuz). Our non-local attention operators
can seamlessly work with local operators in original GNNs. To this
end, our model is able to capture both local and non-local message
passing in graphs by only using shallow GNNs, which avoids the
bottleneck effects of deep GNNss.

The introduced k-Means clustering in GNNs has a variety of
merits: 1) By clustering items (users) into groups, similarity of the
same item (or user) pair does not change significantly inside a group.
This enables users to do item-centric exploration of inventories.
2) Unlike measuring pairwise attentions for every query in Geom-
GCN [31], we group user/item queries into clusters and compute
node-centroid attentions, which yields linear complexity as the
number of centroids in graphs is often very small. 3) As clustering
is performed on each layer of GNNs, and the major network archi-
tecture keeps unchanged, our our model is model-agnostic and can
be applied to any GNNSs. In addition, vanilla k-Means clustering
contains non-differentiable operators, which are not suitable for
end-to-end training. By revisiting the k-Means clustering as an
Optimal Transport task [5], we further derive a fully differential
clustering that can be joint training with GNNs at scale. Experi-
mental results on real-word dataset demonstrate that our model
achieves better performance compared with the state-of-the-art
GNNs. We summarize our key contributions below:

e We propose our model, a model that can capture long-range de-
pendencies without increasing the depths of GNNs. This largely
reduce the bottleneck effects of over-fitting, over-smoothing, and
vanishing gradient in deep GNNs.

e We perform k-Means clustering on embedding space, aiming to
obtain compact centroids. Non-local operators are proposed to
measure node-centroid attentions, which achieve linear complex-
ity to capture long-range dependencies.

e We propose a fully differential k-Means clustering by casting it
to an equivalent Optimal Transport task, which can be solved
efficiently by greedy Sinkhorn algorithm. As such, the parameters
of GNNs and k-Means can be jointly optimized at scale.

o Our our model is model-agnostic and can be applied to any GNNs.
We conduct extensive experiments on four public datasets. The
results demonstrate the benefits of SGCN on the effectiveness
of pruning noisy edges and the usage of low-rank constraints,
resulting in 14.92% ~ 26.23% performance gains.

2 RELATED WORK

In this section, we discuss the relevant work on collaborative filter-
ing, GNN-based Recommendations, and non-local neural networks.
We also highlight the differences between prior efforts and our
proposed model.

2.1 Collaborative Filtering

Collaborative Filtering is a prevalent technique in recommender
systems, which aims to guide users to find the items of interest.
Factorization Machines (FMs) [20, 35] are early attempts to learn
the embeddings of users and items from historical profiles and use
inner product to model pairwise interactions. Inspired by the suc-
cess of deep neural networks, several variants of FMs have been
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proposed to exploit more complex and nonlinear feature interac-
tions. Some representative models include NCF [13], DeepFM [10],
xDeepFM [24], xLightFM [16], FwFMs [32], FmFM [38] etc. These
frameworks usually combines the design of factorization machines
and deep neural networks, which can learn jointly learn low-order
and high-order feature interactions in one unified architecture.

Nevertheless, FM-based methods largely rely on user-item his-
torical interactions, which lack of ability to handle data sparsity
issues e.g., inactive users and items. Moreover, they may incur high
memory consumption when the users/items contains an enormous
number of categorical features [16]. Recently, graphs have been
used to explore the implicit high-order proximity among nodes,
which is useful for discovering topological information between
users and items, leading to better recommendations [8, 47].

2.2 GNN-based Recommendations

Graph Neural Networks (GNNs) have received a lot of attention
for their great performance in graph learning tasks [11, 19, 44].
GNNe s strive to learn how to aggregate node messages from their
local neighbors using neural networks. Recently, researchers have
successfully applied GNNs to user-item bipartite graphs [1, 6, 12,
42, 47]. For instance, PinSage [47] utilizes random walks and graph
convolutions to generate item embeddings from item-item graphs
in Pinterest. GraphRec [6] integrates user social networks to refine
the representations of nodes with attention mechanisms. NGCF [42]
exploits the multi-hop community information to harvest the high-
order collaborative signals between users and items. Light GCN [12]
further simplifies the design of NGCF to make it more concise
for recommendation purpose. Recently, IMP-GCN [28] performs
sub-graph convolution to avoid negative message passing, and
MixGCF [15] further empowers GNNs by providing hard negative
samples through mixup techniques.

Although GNNs have been proven to be effective in generating
node embeddings, they are not very friendly to distill long-range
collaborative signals [22], which are important in understanding of
user behaviors. The main reason is that regular graph convolutions
are essentially local operators with limited receptive fields [29,
31]. While stacking multiple layers can theoretically enable GNNs
to communicate information over long ranges, training deeper
GNN s causes several bottleneck effects (e.g., over-fitting and over-
smoothing). In this study, we aim to learn both local and long-range
messages over an entire graph without increasing the depths of
GNNs, avoiding those bottleneck effects.

2.3 Over-fitting and Over-smoothing

Two main obstacles encountered when developing deeper GCNs
are over-fitting and over-smoothing [21, 23, 30]. Over-fitting comes
from the case when an over-parameterized GCN is used to fit a
distribution given limited training data. Over-smoothing, on the
contrary, leads to features of graph nodes gradually converging
to the same value when increasing the number of convolutional
layers [23]. Both of the above two issues can be alleviated by us-
ing dropout tricks in the GCNs. For example, vanilla Dropout [37]
randomly masks out the elements in the weight matrix to reduce
the effect of over-fitting. However, Dropout does not prevent over-
smoothing since it does not make any change of the graph adjacency
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matrix. DropNode [11] is a node-oriented method that randomly
selects the nodes for the mini-batch training. DropEdge [36] is an
edge-oriented method that randomly removes a certain number of
edges from the input graphs, acting like a data augmenter. Message
dropout [42] randomly drops the outgoing messages in each prop-
agation layer to refine representations. DropoutNet [40] applies
input dropout during training to address cold start issue in recom-
mender systems. Nevertheless, these dropout techniques typically
remove a certain fraction of nodes, edges, or features by random,
which may lead to sub-optimal performance.

2.4 Non-local Neural Networks

Capturing long-range dependencies (a.k.a. global semantic infor-
mation) is proven to benefit numerous visual tasks [14]. However,
regular CNNs have limited ability to deliver messages between dis-
tant positions as the CNN layer only aggregates pixel relations in a
local region. To address this issue, non-local neural networks have
been widely used for numerous visual tasks [27, 33, 41, 43, 49, 54].
The key idea of non-local neural networks is to affect an individual
element (e.g., a region in an image) by aggregating information
from a set of elements (e.g., all the regions in the image), where the
attention weights are determined on the feature similarities among
elements [41, 54]. Beyond CNNs, non-local mechanism is widely
adopted in various kind of network architectures, such RNNs [27],
ResNets [49], and U-nets [43] etc.

Inspired by non-local neural networks, Geom-GCN [31] learns
the long-range dependencies by computing node-level pairwise
relations. However, Geom-GCN is infeasible for large-scale graphs
due to its quadratic complexity. To overcome this issue, the recently
proposed NL-GCN [29] leverages a single calibration vector to
redefine non-local neighborhoods. Nevertheless, NL-GCN solely
calibrates the output embeddings of GNNs, which lacks adaptability.
Our work here builds on this line of work but extends it by reaping
the benefits of GNNs while avoiding such limitations. We introduce
differential clustering method to calibrate the node embeddings of
each layer by using non-local attentions. This allows that a node at
any position perceives contextual messages from all nodes, which
can benefit GNNs to learn long-range dependencies.

3 PROBLEM AND PRELIMINARY
3.1 Problem Definition

In this study, we focus on implicit feedback in recommendations.
Formally, the behavior data, e.g., click, comment, purchase, etc.,
involves a set of users U = {u} and items I = {i}, such that the
set IJ represents the items that user u has interacted with before,
while 7,7 = I — I represents unobserved items. The goal is to
estimate the user preference towards unobserved items.

By viewing user-item interactions as a bipartite graph G, one can
construct a user-item interaction matrix A € RN*M , where N and
M denote the number of users and items, respectively. Each entry
Ayi = 1if user u has interacted with item i , and A,; = 0 otherwise.
We aim to recommend a ranked list of items from 7,;" that are of
interests to the user u € U, in the same sense that inferring the
unobserved links in the bipartite graph G.
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3.2 GNNs for Recommendations

Recently, GNNs provide promising results for recommendations,
like PinSage [47], NGCF [42], and LightGCN [12]. The key idea
of GNN:ss is to learn node embeddings by smoothing features over
graphs. We briefly introduce the design of LightGCN [12], including
embedding lookup, aggregation, pooling, and optimization.

3.2.1 Embedding Layer. Following the mainstream GNN-based
recommendations [12, 13, 42], the initial representations of a user
u and an item i can be obtained via embedding lookup tables:

e1(40) el(O) = lookup(i), (1

= lookup(u),

where u and i denote the IDs of user and item; e£,0> € R? and
elgo) € R are the embeddings of user u and item i, respectively,
and d is the embedding size. These embeddings are expected to
memorize the initial characteristics of items and users, and can be

directly fed into a GNN model.

3.22 Aggregation. In order to exploit high-order collaborative
signals from neighbors. GNN perform graph convolution iteratively,
i.e., aggregating features of neighbors to refine the embedding of a
target node. Take LightGCN as an example, its aggregator is
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where e( ) and e(l) with initialization e(O) and ego) in Eq. (1),
denote the refined embeddings of user u and item i after [-layer
propagation, respectively; N, denotes the set of items that are
directly interacted by user u, and N; denotes the set of users that
are connected to item i. Both N, and Nj can be retrieved from the
user-item graph A. As stacking multiple aggregation layers, each
node can gather messages from its high-order neighbors.

3.2.3 NGCF. Following the standard GCN [19], NGCF [42] lever-
ages the user-item bipartite graph to perform embedding propaga-
tion and feature transformation as:
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in Eq. (2), denote the refined representations of user u and item i in
the k-th layer of GCN, respectively; o(+) is the nonlinear activation
function and © denotes the element-wise product; W1 and W
are trainable weight matrices; N, denotes the set of items that are
directly interacted by user u, and N; denotes the set of users that
are connected to item i. As stacking more convolutional layers, the
model is able to explore high-order collaborative signals between
users and items.

where e;, ’ and e; , with initialization e;,” = e, and e;

(Wle( )+W2(e(k) @e(k)))),

(Wle(k) + Wz(eflk) 0] el(k)))) ,

3.24 Pooling. GNNs usually adopt the pooling techniques to
readout the final representations of users/items [12, 42]. After prop-
agating L layer, LightGCN obtains L + 1 embeddings to represent
a user (e(o) e,(]‘)) and an item (e;o), R egL)). A weighted
sum-based pooling is used to obtain the final representations:
=3 Ael?), ()

_ Z el
1=0

where A; denotes the 1mp0rtance of the I-th layer embedding in
constructing the final embeddings, which can be treated as hyper-
parameter to be tuned manually.

L

3.2.5 Optimization. Finally, one can conduct inner product to
estimate the user’s preference towards the target item as

Oui = eZTe’l-k. (5)
The Bayesian Personalized Ranking (BPR) loss can be employed [35]
to optimize the model parameters. The idea behind pairwise BPR
loss is that an observed item should be predicted with a higher score
than an unobserved one, which can be achieved by minimizing:
Lopr(©) = Y ~Ino (Jui - Guj) + Ol (6)
(u,i,j) €O
where O = {(u, Lj)lueUNnielt Aje IJ} denotes the pair-
wise training data; o(-) is the sigmoid function; © denotes model
parameters, and a controls the Ly norm of © to prevent over-fitting.

3.3 The Local Aggregator Problem

The aggregator in Eq. (9) plays a critical role in collecting messages
from neighbors. However, the graph convolutions are essential lo-
cal operators, i.e., e, only collects information from its first-order
neighbors NV, in each iteration. It is clear that the ability of Light-
GCN to capture long-range dependencies heavily depends on its
depth: at least k GNN layers are needed to capture information
that is k-hops away from a target node. Indeed, simply training
deeper GNNs increases the receptive fields, but will cause several
bottleneck effects, such as over-fitting and over-smoothing. In fact,
most of GNN-based recommendation models achieve their best
performance with at most 3 or 4 layers [12, 42].

Several regularization & normalization techniques have been sug-
gested to overcome the bottleneck of deep GNNs, such as pairwise
distance normalization between node features (PairNorm) [50], dif-
ferentiable group normalization [52], randomly dropping edge [36],
and skip connection [22]. However, the performance gains of deeper
architectures are not always significant nor consistent for many
tasks [22, 23]. Also, the complexity of GNNs is exponential to the
number of layers, causing high demand on training time and GPU
memory [4]. This barrier makes pursuit of deeper GNNs unpersua-
sive for billion-scale graphs. In this work, we ask the question of
whether we can capture long-range dependencies by using shallow
architecture of GNNG.

4 THE OUR MODEL METHOD

Instead of increasing the depth of GNNSs, our proposed our model
aims to integrate graph convolutions and k-Means clustering to
collect both local and non-local messages in graphs. The flow of our
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Figure 2: An overview of our model, where a target user/item
node will aggregate both local messages (e.g., neighbors) and
non-local messages (e.g., user/item centroids).

model is shown in Figure 2. Our proposed our model mainly con-
sists of two stages: 1) obtain cluster-aware representations of users
and items via k-Means clustering; 2) capture long-range dependen-
cies via pairwise node-centroid attentions, rather than node-node
attentions. As shown in Figure 2, even user u; and uy are 2-hops
away from each other, the information of uz will be compactly
represented by the centroid c1, which can be passed to u; with one
layer of GNN. We next introduce our our model in details.

4.1 k-Means Clustering with GNNs

Inspired by the fact that recommender systems suggest similar
item to users that have similar interests, we perform clustering
techniques on the user/item embeddings for each layer of GNNs.
Clustering users/items are widely used in traditional collaborative
filtering models [9, 17], but far less studied in graph neural models.
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From Eq. (9), let {ey,, ey, ..., eun} C R4 denote all the N user
embeddings in I-th layer of GNNs?, we attempt to separate users
to different groups based on user embeddings from GNNs. Never-
theless, clustering may be ineffective when data points live in high-
dimensional spaces. Therefore, we first construct a low-dimensional
user space {fp(ey,), folew,), ..., foleuy)} C RY via a function
fo() : R — R?  where f;(-) can be a neural network or even a lin-
ear projection. In this work, we simply implement fp(ey,) = W-ey;,
for1 <i < N, where W € R¥%d i 3 trainable weight. Then, we
perform k-Means clustering in that low-dimensional space to obtain

K user centroids {c1,c2,...,¢cx} C RY by minimizing:
N K
. 2
min " " m - llfolew,) -kl ()
7015 o

where 7y; indicates the cluster membership of user representa-
tion fp(ey;) w.rt. centroid cg, i.e, mg; = 1 if data point fy(ey;) is
assigned to cluster cg, and zero otherwise. The idea of combining
clustering and neural networks is not new. Its original goal is to
obtain "k-Means friendly" space in which high-dimensional data
would have pseudo-labels, alleviating data annotation bottleneck
in unsupervised learning tasks [7, 45, 48]. Here we use k-Means
to summarize the graph-level information of users within clusters
{c1,¢cg,...,cx}, which can be used to deliver long-range messages
via non-local attention in Sec. 4.3.

However, solving Eq. (7) is not trivial since the term fy(ey;)
involves another optimization task. EM-style methods cannot be
jointly optimized with the GNNs or fy using standard gradient-
based end-to-end learning, due to the non-differentiability of dis-
crete cluster assignment in k-Means objective. Two recent work [7,
45] attempt to address this issue by proposing surrogate losses and
alternately optimizing neural networks and cluster assignments
with stochastic gradient descent. However, it is not guaranteed that
final representations are good for the clustering task if it has been
optimized for another task [48]. We next rewrite the k-Means as
an Optimal Transport task, and derive a fully differentiable loss
function for the purpose of joint training.

4.2 Differentiable k-Means Clustering via OT

Optimal Transport (OT) theory [5] is introduced to study the prob-
lem of resource allocation with lowest transport cost. By regarding
the "cost" as distance, Wasserstein Distance is a commonly used
metric for matching two distributions in OT [3].

4.2.1 Optimal Transport. Let p € P(X), v € P(Y) denote two
discrete distributions, where g = 37, u;0x, and v = 2;.":1 vjdy;,
with 8y as the Dirac function centered on x; II(p, v) denotes all joint
distributions y(x,y), with marginals p(x) and v(y). The weight
vectors u = {u;}1.; € Ay and v = {v;}; € Ap, are the probability
simplices® of size n and m, respectively. The Wasserstein Distance
between p and v is defined as:

’To ease the explanation, we simply discard the subscript of embeddings

(e e

I .
it ,euz,...,e,(ﬁzj} — {€u;,€uy, - - -, €uy } in the I-th layer of GNNs

3The probability simplex is denoted by Ag = {z € RE : TX 2z, =1}.
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D ,v) = inf
w(p,v) yeﬁr(l,,,v)

- i 22T el

i=1 j=1

IB(x,y)~y [e(x,1)]
(8)

where II(u,v) = {T € RJ’:X’" | Tl =u,TT1, = v}; 1, denotes
the n-dimensional vector of ones, and c(x;, y;)is the cost that eval-
uates the distance between x; and y; (samples of two distributions).
The matrix T is denoted as the transport plan, where T;; represents
the amount of mass shifted from u; to v;. The optimal solution T*
is referred asoptimal transport plan.

In this work, we use Optimal Transport Algorithm to solve Eq.

).

4.3 Fast Non-local Attention

To this end, we can capture the attention via

D +Attent10n(eu ,Ck)s

(l+1) Z (
ieN, v Nu UV!

(z+1) Z (
wen; VIN |Nu

The above embedding can be directly plugin into the Optimiza-
tion (6)

©

D +Attent10n(e ,dg).

5 EXPERIMENTS

Here we conduct experiments to answer the following questions:

e RQ1: How effective is the proposed SGCN compared to state-of-
the-art baselines?

e RQ2: How can SGCN alleviate the problem of noisy edges?

e RQ3: How do different components (e.g., stochastic binary masks
and low-rank constraints) affect the performance of SGCN?

5.1 Experimental Settings

5.1.1 Datasets. We use four public benchmark datasets for evalu-
ating recommendation performance:

e Movielens-1M* is a widely used benchmark for recommen-
dations. The dataset contains one million user-movie ratings.

e Gowalla® is a check-in dataset obtained from the location-
based social website Gowalla.

e Yelp® is released by the Yelp challenge. The Yelp2018 version
is used in the experiments.

e Amazon’ contains a large corpus of user reviews, ratings,
and product metadata, collected from Amazon.com. We use
the largest category Books.

For MovieLens, we treat all ratings as implicit feedback, e.g., each
rating score is transformed to either 1 or 0 indicating whether a
user rates a movie. For sparse datasets: Gowalla, Yelp, and Amazon,
we use the 10-core setting of the graphs to ensure that all users
and items have at least 10 interactions [12, 42]. We summarize the
statistics of the datasets in Table 1.

“https://grouplens.org/datasets/movielens/20m/
Shttps://github.com/kuandeng/Light GCN/tree/master/Data
Shttps://www.yelp.com/dataset
"https://jmcauley.ucsd.edu/data/amazon/

Table 1: Dataset statistics.

Dataset #User  #Items #Interactions Sparsity
MovielLens | 6,040 3,900 1,000,209 4.190%
Gowalla | 29,858 40,981 1,027, 370 0.084%
Yelp 31,668 38,048 1, 561, 406 0.130%
Amazon 52,643 91,599 2,984,108 0.062%

For each dataset, we randomly select 80% of historical inter-
actions of each user to construct the training set, and treat the
remaining as the test set. From the training set, we randomly se-
lect 10% of interactions as validation set to tune hyper-parameters.
For each observed user-item interaction, we treat it as a positive
instance, and then conduct the ranking triplets by sampling from
negative items that the user did not consume before. We repeat five
random splits independently and report the averaged results.

5.1.2  Baselines. We compare with the following baselines:

BPR-MF [35]: A classic model that seeks to optimize the
Bayesian personalized ranking loss. We employ matrix fac-
torization as its preference predictor.

NeuMF [13]: NeuMF learns nonlinear interactions between
user and item embeddings via a multi-layer perceptron as
well as a generalized matrix factorization.

e GC-MC [1]: GC-MC employs a graph auto-encoder approach
to learn the embeddings of users and items. A bilinear de-
coder is then used to predict the preference scores.
HOP-Rec [46]: HOP-Rec discovers high-order indirect in-
formation of neighborhood items for each user from the
bipartite graph by conducting random surfing on the graph.
BiNE [8]: BiNE learns both explicit and implicit user-item
relationships by performing biased random walks on the
bipartite graph.

NGCEF [42] and LightGCN [12]: Two state-of-the-art GCN-
based collaborative filtering models. They are briefly intro-
duced in the Section 3.2.

5.1.3 Implementation Details. We implement our SGCNs in the
TensorFlow. For all models, the embedding dimension d of users and
items (e.g., in Eq. (2)) is searched among {16, 32, 64, 128}. For base-
lines BPR-MF, NeuMF, GC-MC, HOP-Rec, and BiNE, their hyper-
parameters are initialized as in their original papers and are then
carefully tuned to achieve the optimal performance. For the GCN
components inside the proposed SGNNs, we use the same hyper-
parameters as the original NGCF and LightGCN, such as batch size,
stopping criteria, learning rate in Adam optimizer, etc. In addition,
the SGCNs have two hyper-parameters f and y to control the de-
gree of sparsity and low-rank structure, respectively. We tune both
B and y within {0.001, 0.005,0.01,0.05,0.1,0.5} to investigate the
parameter sensitivity of our models.

To evaluate the performance of top-n recommendation, we adopt
two widely used evaluation metrics [12, 42]: Recall and Normalized
Discounted Cumulative Gain (NDCG) over varying numbers of top
ranking items.
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Table 2: Recommendation performance comparison for different models. Note that R and N are short for Recall and NDCG,
respectively.

MovieLens Gowalla Yelp Amazon

Metric R@50 N@50 R@100 N@100 | R@50 N@50 R@100 N@100 | R@50 N@50 R@100 N@100 | R@50 N@50 R@100 N@100
BPR-MF 0.282  0.243 0.371 0.354 0.129  0.118 0.346 0.156 0.093  0.038 0.140 0.047 0.069  0.041 0.122 0.059
NeuMF 0.297  0.251 0.378 0.368 0.143  0.124 0.350 0.169 0.103  0.040 0.151 0.050 0.074  0.047 0.135 0.061
GC-MC 0.291  0.247 0.375 0.360 0.137  0.122 0.347 0.163 0.098  0.036 0.146 0.044 0.070  0.044 0.128 0.064
HOP-Rec | 0.314  0.260 0.373 0.367 0.135 0.125 0.352 0.182 0.111  0.048 0.163 0.053 0.080  0.059 0.143 0.074
BiNE 0.312  0.253 0.381 0.371 0.141  0.126 0.354 0.188 0.110  0.042 0.155 0.049 0.076  0.052 0.134 0.069
NGCF 0.325  0.289 0.393 0.382 0.160  0.132 0.356 0.197 0.114  0.054 0.172 0.061 0.092  0.065 0.157 0.076
LightGCN | 0.328  0.294 0.399 0.384 0.163  0.134 0.360 0.205 0.117  0.059 0.181 0.067 0.098  0.071 0.162 0.083
SGNNs 0.351 0.326 0.456 0.477 | 0.199 0.163 0.401 0.256 | 0.176 0.101  0.208 0.092 | 0.134 0.097 0.181 0.112

5.2 Performance Comparison (RQ 1) [10] Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. 2017.

In this section, we compare the proposed SGCNs with baselines
in terms of Recall@n and NDCG@n on all four datasets, where n
is set to 50 and 100. The performance for different top-n values is
similar in the experiments, we omit them for space limitation. The
results for top-n recommendation are summarized in Table 2. Our
proposed models consistently yield the best performance across
all cases. From Table 2, our proposed model highly outperform the
existing models.

6 CONCLUSION AND FUTURE WORK

In this paper, we propose Structured Graph Convolutional Networks
to reduce the negative effects of noise in user-item bipartite graphs.
In particular, we enforce sparsity and low-rank structure of the
input graph while simultaneously training the parameters of GCNs.
Our proposed SGCNs are compatible with various GCNs, such as
NGCF and LightGCN, which can improve their robustness and
generalization. The extensive experiments with real-world datasets
show that SGCNs outperform the existing baselines.

For future work, we plan to improve our SGCNs by incorporating
semantic information of graphs, such as users’ social information or
items’ knowledge graph. Moreover, we are interested in applying
pre-training strategies to enhance the embeddings of users and
items. Lastly, we will also explore the explainability of GCN, e.g.,
discovering a compact subgraph structure for a target user.
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